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b Faculty of Science, Bijenička 32, 10000 Zagreb, Croatia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 June 2011
Revised 4 August 2011
Available online 31 August 2011

Keywords:
Boson peak
Multi-frequency EPR
Electron spin–lattice relaxation
1090-7807/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jmr.2011.08.029

⇑ Corresponding author.
E-mail address: kveder@irb.hr (M. Kveder).
The influence of boson peak (BP) excitations on low-temperature spin–lattice relaxation rate of a para-
magnetic center embedded in a glassy matrix is investigated in the context of multi-frequency electron
paramagnetic resonance (EPR) detection. In the theoretical analysis, the transition rate of spin one-half in
the presence of a phonon field is calculated within the approximation of Fermi’s golden rule. Several pho-
non densities of states are compared, among which one originating from a model of quasi-localized vibra-
tions has been introduced into electron spin relaxation formalism for the first time. The respective
frequency dependencies of spin–lattice relaxation rates are predicted which should lead to observable
effects of BP modes if a multi-frequency study at very low temperatures is performed.
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1. Introduction

One of the ubiquitous properties of almost all glasses is an excess
in the vibrational density of states q(x) over the prediction of the
Debye theory [1]. This phenomenon shows up as a maximum in
q(x)/x2 and is termed the boson peak (BP) [2]. For different materi-
als, the maximum densities of states at the peak appear in the range
of frequencies between 0.4 and 2 THz [3]. The very nature of the BP is
still extensively debated in the theory of condensed matter physics
proposing specific theoretical models [4–7], while different experi-
mental techniques have addressed the issue [8–11]. In this context,
conventional X-band electron paramagnetic resonance (EPR)
spectroscopy has presented very few results in which the impact
of the BP has been discussed [3,12,13], the reason being that the
EPR frequency only partially overlaps the BP frequency range.
However, with advances in high frequency EPR spectrometers, the
method is challenged to contribute toward the understanding of
BP-related phenomena providing experimental data within the
specific range of frequencies [14,15].

BP excitations are expected to play a role in electron spin
–lattice relaxation, T1, at low temperatures where phonon mecha-
nisms dominate the energy exchange between the spin system
and the lattice [16]. In this context, one-phonon processes are as-
sumed to be the most important ones governing spin relaxation
and exhibiting the linear temperature dependence of the respective
1/T1 data at the X-band EPR frequency [13,17]. These processes
ll rights reserved.
include several mechanisms, BP excitations being only one of them.
Therefore, it is not possible to resolve the BP contribution by con-
sidering the temperature dependence of spin relaxation measure-
ments performed at only one EPR frequency. For that reason, the
aim of this study was to show how EPR spectroscopy performed
at multiple frequencies and at low temperatures can contribute to-
ward the detection of the BP contribution via frequency depen-
dence of spin–lattice relaxation time measurements. Primary
attention was focused on high-field EPR measurements, in which
the resonant frequency approaches the BP maximum. It should be
mentioned that lattice phonons can modulate different interac-
tions, causing an energy exchange between the electron spin sys-
tem and the lattice, which becomes frequency/magnetic-field
dependent. For instance, in the direct or resonant process, the elec-
tron spin state is changed due to the absorption or emission of a res-
onant phonon, giving rise to 1=Tdirect

1 / x2T in the context of Debye
theory [18]. When phonon modulation of g tensor anisotropy, Dg, is
important, the frequency dependent electron spin–lattice relaxa-
tion rate should be additionally considered [19]. Phonon modula-
tion of the electron spin–orbit coupling was extensively
elaborated, showing that in the context of Debye model of phonon
density of states, electron spin–lattice relaxation rates exhibit
strong frequency dependence, 1=TKramers

1 / x4T and 1=Tnon-Kramers
1

/ x2T for Kramers and non-Kramers systems, respectively [16,20].
The analysis presented here is focused on the frequency/mag-

netic-field dependence of the electron spin–lattice relaxation rate,
1/T1, due to the BP excitations emerging from one-phonon mecha-
nisms, such as the phonon modulation of electron-nuclear spin
dipole–dipole coupling. Regarding multi-phonon processes, such
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as the Raman mechanism of spin relaxation when BP modes can be
involved, this contribution should not be considered here because
the Raman process cannot be resolved on the basis of respective
frequency dependence and makes a minor contribution at low
temperatures. In deriving 1/T1 formalism, the simplest approach
was only intended to be considered as an initial approximation
of the idea of a complex BP interrelation with electron-spin
relaxation. It should be mentioned that the microscopic origin of
BP phenomenon is still under dispute in terms of whether BP is
related to the propagating plane waves and, thus, has a collective
nature or is due to localized vibrational excitations. Since one of
the first reports on the boson peak affecting electron spin–lattice
relaxation was derived in the context of Debye formalism [3], the
concept of our study was placed in the same framework. The
following simplifications were assumed: (i) the involved spins
are coupled via dipolar interaction while the lattice vibrations, in
terms of the acoustic phonons, slightly displace their positions
[21]; (ii) the transition probabilities between the initial and final
states of the combined electron spin one-half and phonon system
were calculated within the framework of Fermi’s golden rule
approximation; (iii) the validity of long-wave approximation
within the normal coordinate expansion was anticipated.

In the context of this study, we emphasize that the frequency
dependence of the spin–lattice relaxation rate is crucially deter-
mined by the assumed model of the phonon density of the states.
Therefore, the densities of the phonon states according to Debye
[22], modified Debye [3,19], for two-level tunneling systems (TLS)
[23] and one developed within the model of quasi-localized vibra-
tions (QLV) [24] were discussed. These were chosen due to their con-
tributions regarding low temperature EPR experiments, except for
the last one, which was introduced here for the first time into the
field of EPR relaxation rate processes, although successfully applied
in the analysis of the BP phenomena detected by other spectroscopic
techniques [10]. We use the results of our study to propose the way
how to make BP modes observable in the experimental data, if they
participate in spin–lattice relaxation. In particular, we show that
when BP excitations affect spin relaxation, a specific frequency
dependence of 1/T1 should be experimentally derived, despite the
universal temperature dependence of other one-phonon contribu-
tions. Therefore, we propose that high-field EPR spectroscopy, apart
from being valuable in increasing the spectral resolution of overlap-
ping paramagnetic species, can also contribute to the study of BP
excitations and the development of a self-consistent description of
the dynamical properties of glass-forming materials.

2. One-phonon processes and 1/T1

Following the text books on relaxation processes in magnetic
resonance, the spin–lattice relaxation rate for a combined spin
one-half and phonon system can be calculated by Fermi’s golden
rule approximation [16]

1=T1 ¼ wab þwba: ð1Þ

wab and wba denote transition probabilities/rates between the two
spin one-half states a and b according to:

wab ¼
2p
�h

X
n0

b;n0jHja;nh ij j2dð�hx� ðEb � EaÞÞ; ð2aÞ

wba ¼
2p
�h

X
n0

a;n0jHjb;nh ij j2dð�hxþ ðEa � EbÞÞ: ð2bÞ

In the expression, H denotes the Hamiltonian, Ea,b are the respective
energies related to the two involved spin states, n and n0 refer to the
phonon states and ⁄x is the energy of the phonon that mediates the
transition. The summation runs over the phonon states.
Here we focus on one-phonon processes that bring about the
frequency/magnetic field dependence of electron spin relaxation,
such as the phonon modulation of electron-nuclear spin dipolar
interaction. In particular, electron–proton dipolar interaction is ad-
dressed explicitly while the extension to electron–electron cou-
pling is straightforward.

Electron-nuclear spins coupled via dipolar interaction are ex-
posed to lattice vibrations, which slightly displace their positions.
For the purpose of simplicity, we explicitly consider only the fluc-
tuations of the interspin distance due to the acoustic branch of the
phonons (a more general approach is discussed in the Appendix A).
The appropriate Hamiltonian can be approximated with

H ¼ H0 þ Hint; H0 ¼ HZ þ Hph: ð3Þ

H0 defines the combined spin-phonon states, with HZ denoting the
sum of single-spin Zeeman Hamiltonians in the absence of dipole
coupling and Hph is the lattice Hamiltonian. Hint is responsible for
the phonon-mediated electron spin transitions in Eq. (2) character-
ized by the change in the electron magnetic quantum number
|Dmi| = 1. The relevant interaction Hamiltonian being the dipolar
interaction between the electron spins i and proton spins j reads
as follows in terms of [25]

Hint ¼ �
X

ij

cScN�h2

r3
ij

ðAþ Bþ CÞ; ð4aÞ

A ¼ 1
4
ðSþI� þ S�IþÞð1� 3 cos2 hijÞ; ð4bÞ

B ¼ 3
2

sin hij cos hijðSþIZe�iuij þ S�IZeþiuijÞ; ð4cÞ

C ¼ 3
4

sin2 hijðSþIþe�2iuij þ S�I�eþ2iuij Þ: ð4dÞ

rij denotes the distance between the coupled spins, hij and uij are
the dipolar angles defining the orientation of the rij-vector with re-
spect to the direction of the external magnetic field; cS and cI are
electron and proton gyromagnetic rations while S+, S�, I+, I� and IZ

are electron and proton spin operators with their standard mean-
ings, respectively [16].

The distance between the coupled spins can be expressed in
terms of the respective rigid lattice distance, Rij, and relative dis-
placement, uij, due to the lattice vibrations

~rij ¼ R
!

ij þ~uij; R
!

ij ¼ R
!

i � R
!

j; ~uij ¼ ~ui �~uj: ð5Þ

Assuming that j~uijj � j R
!

ijj, the expansion of 1=r3
ij in Eq. (4) can be

done up to the linear term and Hint factorized in the spin-depen-
dent, hS and phonon-dependent parts only, hph, as follows

Hint ¼
X

ij

hij
Sð1þ hij

phÞ; ð6aÞ

with

hij
S ¼ �

cScN�h2

R3
ij

ðAþ Bþ CÞ; ð6bÞ

and

hij
ph ¼ �3

ð~ui �~ujÞ R
!

ij

R2
ij

: ð6cÞ

In the context of this study, the matrix elements involving Hint with
hij

ph are the focus of interest as they give rise to the temperature and
frequency dependence of the spin–lattice relaxation rate. The dis-
placement vector can be expressed by making use of normal coor-
dinate expansion
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~ui ¼
X
~k;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2MNx~k

s
~e~kei~k R
!

i ða~k þ aþ
�~k
Þ; ð7Þ

with ~k denoting phonon wave vector, N is the number of normal
modes bearing the polarization vector,~e~k, s denotes polarization in-
dex, M is the ionic mass while aþ~k and a�~k are phonon creation and
annihilation operators [22]. Assuming long-wave approximation,
the relative displacement reads

~ui �~uj ¼
X
~k;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2MNx~k

s
~e~kikRij cos /ije

i~k R
!

j ða~k þ aþ
�~k
Þ ð8Þ

where /ij refers to the angle between R
!

ij and~k. In order to calculate
hij

ph, the contributions of both the longitudinal (L) and transverse (T)
phonon polarizations are taken into account. Combining Eq. (8) with
Eq. (6c) and realizing that only one out of two transverse polariza-
tions makes a contribution, the following expression is obtained

hij
ph ¼� 3i

X
~k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxL

~k

2MNc2
L

vuut cos2 /ije
i~k R
!

j a~k þ aþ
�~k

� �
L

0
@

þ
X
~k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxT

~k

2MNc2
T

vuut cos /ij sin /ije
i~k R
!

j a~k þ aþ
�~k

� �
T

1
A: ð9Þ

By taking into account Eq. (9), which defines one-phonon-
mediated spin transitions, the transition probabilities defined in
Eq. (2) for an electron–proton spin pair coupled by dipolar interac-
tion read

wij
ab ¼

2p
�h

9
X

n

Aij cos4 /ij

�hxL
~k

2MNc2
L

nL
~k
d �hxL

~k
� ðEb � EaÞ

� � 

þ cos2 /ij sin2 /ij

�hxT
~k

2MNc2
T

nT
~k
d �hxT

~k
� ðEb � EaÞ

� �!
; ð10aÞ

wij
ba ¼

2p
�h

9
X

n

Aij cos4 /ij

�hxL
~k

2MNc2
L

ðnL
~k
þ 1Þd �hxL

~k
þ ðEa � EbÞ

� � 

þ cos2 /ij sin2 /ij

�hxT
~k

2MNc2
T

ðnT
~k
þ 1Þd �hxT

~k
þ ðEa � EbÞ

� �!
: ð10bÞ

Aij contains spin-dependent parts, including the spatial orientation
between the coupled spins, and n~k denotes the mean number of
phonons with wave vector ~k and energy �hx~k that are present at
temperature T

n~k ¼
1

eð�hx~k
=kBTÞ � 1

:

kB denotes the Boltzmann constant. The summation over the phonon
states can be replaced by a summation over the directions of the wave
vectors~k and over the phonon frequencies [21]. In particular, the iso-
tropic distribution of the wave vector directions can be assumed as
giving rise to the factors 1/5 for longitudinal and 2/15 for the trans-
verse polarizations of the phonons, while the summation over pho-
non frequencies can be replaced by an integration over the phonon
density of the states. Therefore, within the approximations used in
the calculations, the difference in the phonon polarization states does
not affect the frequency dependence of the spin–lattice relaxation
rate, the primary subject of this study. Including the summation over
the spin pairs coupled by dipolar interaction, Eq. (1) finally reads

1=T1 ¼ BqðxEPRÞxEPR coth
1
2

�hxEPR

kBT

� �
: ð11Þ

B contains, apart from the spin-dependent terms, all the numerical
factors and q(xEPR) is the phonon density of states at the working
EPR frequency, xEPR = |Eb � Ea|/⁄. Inspection of Eq. (11) indicates that
the frequency dependence of the spin–lattice relaxation rate is cru-
cially determined by the assumed model of q(xEPR). Therefore, we
discuss models of q(xEPR) related to boson peak excitations in the
context of multi-frequency low-temperature 1/T1 measurements.
3. Discussion

In this study, we focus on one-phonon mechanisms that bring
about a specific frequency/magnetic field dependence of electron
spin relaxation due to the involvement of boson peak effects.
The analysis relies on Eq. (11), essentially representing a two-
dimensional problem in which the microwave frequency and
temperature dependence should be disentangled. The informa-
tion about the BP effect is operatively contained in the former
property while the latter depends on the hyperbolic cotangent
function, which exhibits two interesting limits at low tempera-
tures(1–15 K). When spin–lattice relaxation rates are determined
at frequencies lower than the Q-band EPR (34 GHz), only the first
term of the Taylor expansion in the hyperbolic cotangent func-
tion can be taken into account due to kBT � �hxEPR, thus, render-
ing 1/T1 / T. On the other hand, at higher EPR frequencies above
W-band EPR (94 GHz), the hyperbolic cotangent function ap-
proaches unity due to kBT � �hxEPR. This is illustrated in Fig. 1.
It can clearly be seen that by increasing the EPR frequency from
the X-band (10 GHz) to higher frequencies, the temperature
dependence of 1/T1 levels off below 10 K. For instance, the
hyperbolic cotangent function evaluated at 5 K reads 1.2, 1.04,
and 1 for the EPR frequencies of 263 GHz, 400 GHz and
700 GHz, respectively. This means that above 263 GHz, according
to the formalism presented by Eq. (11), any relaxation mecha-
nism including terms such as given in Eq. (4) would experimen-
tally sample temperature independent 1/T1 at T 6 5 K. This
phenomenon points to a practical experimental consequence,
i.e., the higher the frequency, the broader the low-temperature
interval where the acquired data are not expected to depend
on the temperature due to the hyperbolic cotangent function
term (e.g., this condition is already fullfilled at 10 K for experi-
ments performed at 700 GHz). Fulfilling this condition according
to Eq. (11), 1/T1 becomes solely frequency dependent and in
principle makes it possible to verify the involvement of BP exci-
tations in the energy exchange between the electron spin and
the lattice by performing measurements at several high frequen-
cies/magnetic fields. Following this reasoning, we discuss the
frequency dependence of 1/T1 behavior predicted from various
models of the phonon density of states assuming temperature-
independent 1/T1.

3.1. Modified Debye model

One of the first reports on the boson peak affecting electron
spin–lattice relaxation in amorphous materials in the context of
one-phonon relaxation mechanisms proposed a modified Debye
density of states [3]

qðxÞ ¼ 9Nx2

x3
D

1þ lx2
BP

x2 e� lnðx=xBP Þ=
ffiffi
2
p

rð Þð Þ2
� �

; ð12Þ

with N denoting the total number of acoustic phonon modes, xD

being the Debye frequency, and l and r being constants in the
range of 2–10 and 0.48, respectively. The first term in Eq. (12) cor-
responds to the phonon density of states according to the standard
Debye model [22], while the second term describes the contribution
of vibrational excitations in the vicinity of xBP characterized by the
width, r, of the boson peak distribution. Substituting Eq. (12) into
Eq. (11), the spin–lattice relaxation rate reads



Fig. 1. Temperature dependence of spin–lattice relaxation rate, 1/T1, according to
Eq. (11) presented for the following frequencies: X-band (solid line), Q-band (short
dash line), W-band (dotted line), 250 GHz (dash-dot line), 400 GHz (dash-dot-dot
line) and 700 GHz (long dash line). Data are expressed in terms of spin–lattice
relaxation rate at T = 0 K, (1/T1)0.

Fig. 2. Frequency dependence of spin–lattice relaxation rate, 1/T1, calculated for
T = 0 K according to the modified Debye model [3,19] given in Eq. (13) assuming
l = 10, r = 0.48, (full symbols). The comparison is made with respect to the Debye
model (empty symbols) for two boson peak frequencies: mBP = 500 GHz (triangles)
and mBP = 250 GHz (circles). Data are expressed in terms of spin–lattice relaxation
rates at X-band frequency, (1/T1)X-band, in order to eliminate all the constants from
the expression.
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1=T1 /
x3

EPR

x3
D

1þ l
x2

BP

x2
EPR

e�ðlnðxEPR=xBP Þ=ð
ffiffi
2
p

rÞÞ2
� �

coth
1
2

�hxEPR

kBT

� �
: ð13Þ

The expected frequency dependence of the spin–lattice relaxation
rate is shown in Fig. 2 and compared with the Debye model. It
should be noted that in this approach, the BP contribution is posi-
tioned at will at a certain EPR frequency, where it causes a small
‘‘hump’’ in the otherwise monotonous increase of 1/T1, with an in-
crease in EPR frequency as predicted by the Debye theory.

3.2. Model of quasi-localized vibrations

The thermal properties of glasses at low frequencies, x� xD,
and low temperatures, T � TD, have usually been discussed in
the standard model of non-interacting two-level systems (TLS),
which exist in glass but not in crystal [26]. In this concept, the
motion of nuclei within the TLS double-well potential provokes
time-dependent perturbation of the nearby electron spins via
electron-nuclear dipolar interaction [23]. From the two processes
involved in TLS dynamics, tunneling and thermally activated
processes, only the former should be taken into account when
low temperature one-phonon-assisted tunneling is involved.
Assuming that the tunneling mode energies are below the thermal
energy, the electron spin–lattice relaxation rate can be expressed
as [23]

1=T1 /
1

x2
EPR

T: ð14Þ

This approach predicts that longer T1 will be sampled with an in-
crease in the experimental frequency in a glassy sample, which is
completely different behavior from that expected from the Debye
theory describing the crystalline state of matter.

On the other hand, the boson peak, as a universal property of
glasses, is observed at much higher frequencies and, thus, is usually
considered separately from the TLS [11]. However, in the model of
quasi-localized vibrations (QLV), a physical picture has been
presented in which the interrelation of the TLS and boson peak exci-
tations was proposed [24]. This approach was successfully applied in
the analysis of fluorescent single-molecule spectroscopic data [10],
subterahertz hypersound attenuation measurements [27] and
neutron scattering data [28]. Essentially, the QLV model evolved
from the ‘‘soft-mode’’ model [29,30], which postulated that in glassy
systems the participation of both harmonic (Debye phonons) and
anharmonic dynamics at temperatures far below the liquid-glass
transition should be considered [31,32]. The idea was further elabo-
rated within the QLV model, which focuses on quasi-localized har-
monic modes, understood as local low-frequency vibrations,
undergoing weak interactions with the high frequency surroundings
(e.g., sound waves) and with each other [24]. Due to this interaction
between soft and high-frequency oscillators, vibrational instability
occurs that is controlled by the anharmonicity, similarly to bilinearly
coupled harmonic oscillators that become unstable when the
respective interaction exceeds a critical value [33]. Due to the same
mechanism of vibrational instability, the vibrational density of the
states of low-frequency harmonic oscillators is reconstructed in
such a way that two-level systems are created simultaneously with
the boson peak. These collective low-frequency vibrations exhibit
the density of vibrational states [24]

qðxÞ ¼ C
x4

x3
�

Z ffiffiffiffiffiffi
3=2
p

0

dt

1þ x
x�

� �6
t2ð3� 2t2Þ2

; ð15Þ

where C includes all the constant terms and it is assumed that
x� � xBP . The boson peak at x � xBP corresponds to the maximum
in the reduced density of states, qðxÞ=x2, when plotted against
x=x�.

In the framework of the QLV model, here we present for the first
time a prediction of the electron spin–lattice relaxation rate related
to the detection of the boson peak by EPR spectroscopy. However,
it should be mentioned that within the simplified concept of BP
excitations affecting electron spin relaxation presented in this
study, the rationale for combining the parameters from the QLV
model with the essentially collective nature of the formalism
defining 1/T1 is due to the fact that the soft-modes are not the ex-
act eigenstates of the glass because they are mixed with acoustic
phonons [33] and 10–100 atoms can be involved in the vibrational
displacement [34]. Introducing the QLV density of the states from
Eq. (15) into the expression for the electron spin–lattice relaxation
rate, Eq. (11) reads

1=T1/ x5
Z ffiffiffiffiffiffi

3=2
p

0

dt

1þx6t2ð3�2t2Þ2
coth

1
2

x
kBT

�hxBP; x¼xEPR

xBP
: ð16Þ



Fig. 3. Prediction of the frequency dependence of spin–lattice relaxation rate, 1/T1,
calculated for T = 0 K according to QLV model [24] given in Eq. (16) assuming
mBP = 500 GHz (full line) and mBP = 250 GHz (dashed line). In the inset to the figure,
the prediction according to Eq. (14) in the context of TLS excitations is provided
[23]. Data are expressed in terms of spin–lattice relaxation rates at X-band
frequency, (1/T1)X-band, in order to eliminate all the constants from the expression.
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It can be shown that the integral in Eq. (16) is constant up to
xEPR � 0:8xBP . In this case, the spin–lattice relaxation rate is scaled
with a frequency to the power of 5 when the hyperbolic cotangent
function is close to unity or to the power of 4 when kBT � �hxEPR.
The frequency dependence of 1/T1 according to Eq. (16) is presented
(Fig. 3).

In conformity with the preceding analysis, checking for BP
involvement in the experimental relaxation rate data should be
strongly considered when a shorter T1 sampling with an increase
in the experimental frequency, as compared to the Debye fre-
quency behavior, is detected at low temperatures. According to
the presented formalism, strong frequency dependence is to be ex-
pected in the multi-frequency analysis of 1/T1. In this case, an en-
hanced energy exchange between the spin system and the lattice
in the glassy systems can be anticipated due to the BP excitations.
4. Conclusion

The analysis presented here was motivated by sparse low tem-
perature 1/T1 data measured at several EPR frequencies [35–38]. In
addition, the impact of the BP had previously been rarely discussed
in the context of electron spin coupling with the lattice [3,13].
Therefore, the aim was to show that a multi-frequency EPR ap-
proach can be exploited to disentangle BP involvement in electron
spin relaxation in glassy solids at temperatures below ca. 10 K. The
sensitivity of the approach relies on the distinct frequency depen-
dence of 1/T1 in glassy versus crystalline solids. The predictions de-
rived within the models of the phonon density of states point to
the greater dependence of 1/T1 on EPR frequencies as compared
to the predictions of the standard Debye model, what should make
BP experimentally discernable. In particular, the expected shorter
T1 sampling with an increase in the experimental frequency should
clearly rule out the mechanism involving TLS excitations. The ver-
ification of the exact theoretical model is left to the adequate mul-
ti-frequency/high magnetic field EPR study.
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Appendix A

Considering the interaction Hamiltonian presented in Eq. (6) in
the analysis of the phonon-dependent electron 1/T1, one should
generally take into account both the fluctuations of the interspin
distance, rij = Rij + Drij, and dipolar angle, hij = Hij + Dhij, according
to

Hint ¼
X

ij

Hintðrij; hijÞ

¼ �
X

ij

cScN�h2

r3
ij

A Hij þ Dhij
	 


þ B Hij þ Dhij
	 


þ C Hij þ Dhij
	 
	 


:

ð1AÞ

The series expansion of Eq. (1A) up to the linear term in u reads

Hint ¼
X

ij

Hint þ Duij
II
@Hint

@rij

� �
rij¼Rij

þ Duij
?

1
Rij

@Hint

@hij

� �
hij¼Hij

; ð2AÞ

with

Drij ¼ Duij
II ¼ ð~ui �~ujÞ R

!
ij=Rij and Dhij ¼ Duij

?=Rij: ð2BÞ

As shown by Eq. (9)

Duij
II ¼ j~ui �~ujj cos /ij and Duij

II ¼ j~ui �~ujj sin /ij; ð3AÞ

for longitudinal and transverse acoustic phonons, respectively. We
illustrate the effect of dipolar angle fluctuations by assuming that
~k, R
!

ij and the magnetic field vector are coplanar. In that case, one
obtains

Duij
? ¼ j~ui �~ujj sin /ij and Duij

? ¼ j~ui �~ujj cos /ij; ð3BÞ

for longitudinal and transverse acoustic phonons, respectively. It
should be pointed out that, with respect to this very special case,
the general orientation of~k, R

!
ij and the magnetic field vector would

bring, apart from different angular terms, the same linear depen-
dence on the atomic displacement that is the main subject of this
study. Therefore, we can conclude that since both the angular and
distance fluctuations depend linearly on the atomic displacement,
the same type of frequency dependence of the electron 1/T1 will
be induced. In particular, the main result of this investigation fo-
cused on the frequency dependence of the electron 1/T1, derived so-
lely by explicitly considering the fluctuations of the interspin
distance within the presented formalism, is of general value. A sim-
ilar conclusion regarding the temperature dependence of phonon-
assisted spin diffusion rates in solids was reported for NMR [21].
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